Data Optimization with Multilayer Perceptron Neural Network and Using New Pattern in Decision Tree Comparatively
نویسنده
چکیده
Problem statement: The aim of the present study is to exemplify the use of Artificial Neural Networks (ANN) for parameter prediction. Missing value or unreal approach to some questions in scale is a problem for unbiased findings. To learn a real pattern with ANN provides robust and unbiased parameter estimation. Approach: To this end, data was collected from 906 students using “Scale of student views about the expected situations and the current expectations from their families during learning process” for the study entitled “Student views about the expected situations and the current expectations from their families during learning process”. In the study, first the initial data set gathered using the measurement tool and the new data set produced by Multi-Layer Receptors algorithm, which was considered as the highest predictive level of ANN for the research were individually analyzed by Chaid analysis and the results of the two analyses were compared. Results: The findings showed that as a result of Chaid analysis with the initial data set the variable “education level of mother” had a considerable effect on total score dependent variable, while “education level of father” was the influential variable on the attitude level in the data set predicted by ANN, unlike the previous model. Conclusion/Recommendations: The findings of the research show Artificial Neural Networks could be used for parameter estimation in cause-effect based studies. It is also thought the research will contribute to extensive use of advanced statistical methods.
منابع مشابه
A conjugate gradient based method for Decision Neural Network training
Decision Neural Network is a new approach for solving multi-objective decision-making problems based on artificial neural networks. Using inaccurate evaluation data, network training has improved and the number of educational data sets has decreased. The available training method is based on the gradient decent method (BP). One of its limitations is related to its convergence speed. Therefore,...
متن کاملPrediction of Breast Tumor Malignancy Using Neural Network and Whale Optimization Algorithms (WOA)
Introduction: Breast cancer is the most prevalent cause of cancer mortality among women. Early diagnosis of breast cancer gives patients greater survival time. The present study aims to provide an algorithm for more accurate prediction and more effective decision-making in the treatment of patients with breast cancer. Methods: The present study was applied, descriptive-analytical, based on the ...
متن کاملVolumetric soil moisture estimation using Sentinel 1 and 2 satellite images
Surface soil moisture is an important variable that plays a crucial role in the management of water and soil resources. Estimating this parameter is one of the important applications of remote sensing. One of the remote sensing techniques for precise estimation of this parameter is data-driven models. In this study, volumetric soil moisture content was estimated using data-driven models, suppor...
متن کاملAnalyzing the performance of different machine learning methods in determining the transportation mode using trajectory data
With the widespread advent of the smart phones equipping with Global Positioning System (GPS), a huge volume of users’ trajectory data was generated. To facilitate urban management and present appropriate services to users, studying these data was raised as a widespread research filed and has been developing since then. In this research, the transportation mode of users’ trajectories was identi...
متن کاملModeling and analysis of leishmaniasis distribution process using multilayer perceptron neural network and support vector regression (Case study: villages of Isfahan province)
Villages located in Isfahan province are one of the areas prone to the spread of cutaneous leishmaniasis, which is characterized by the occurrence of wounds on the skin. To predict the future prevalence of cutaneous leishmaniasis, Continuous monitoring of the spatial distribution of this disease is essential. Disease modeling was performed using two machine learning algorithms called support ve...
متن کامل